Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Am J Physiol Renal Physiol ; 326(1): F30-F38, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916286

RESUMO

Plasma nucleosides-pseudouridine (PU) and N2N2-dimethyl guanosine (DMG) predict the progression of type 2 diabetic kidney disease (DKD) to end-stage renal disease, but the mechanisms underlying this relationship are not well understood. We used a well-characterized model of type 2 diabetes (db/db mice) and control nondiabetic mice (db/m mice) to characterize the production and excretion of PU and DMG levels using liquid chromatography-mass spectrometry. The fractional excretion of PU and DMG was decreased in db/db mice compared with control mice at 24 wk before any changes to renal function. We then examined the dynamic changes in nucleoside metabolism using in vivo metabolic flux analysis with the injection of labeled nucleoside precursors. Metabolic flux analysis revealed significant decreases in the ratio of urine-to-plasma labeling of PU and DMG in db/db mice compared with db/m mice, indicating significant tubular dysfunction in diabetic kidney disease. We observed that the gene and protein expression of the renal tubular transporters involved with nucleoside transport in diabetic kidneys in mice and humans was reduced. In conclusion, this study strongly suggests that tubular handling of nucleosides is altered in early DKD, in part explaining the association of PU and DMG with human DKD progression observed in previous studies.NEW & NOTEWORTHY Tubular dysfunction explains the association between the nucleosides pseudouridine and N2N2-dimethyl guanosine and diabetic kidney disease.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Pseudouridina/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Nucleosídeos/metabolismo , Eliminação Renal , Rim/metabolismo , Guanosina/metabolismo
2.
J Biol Chem ; 300(1): 105502, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016515

RESUMO

Fatty acid handling and complex lipid synthesis are altered in the kidney cortex of diabetic patients. We recently showed that inhibition of the renin-angiotensin system without changes in glycemia can reverse diabetic kidney disease (DKD) and restore the lipid metabolic network in the kidney cortex of diabetic (db/db) mice, raising the possibility that lipid remodeling may play a central role in DKD. However, the roles of specific enzymes involved in lipid remodeling in DKD have not been elucidated. In the present study, we used this diabetic mouse model and a proximal tubule epithelial cell line (HK2) to investigate the potential relationship between long-chain acyl-CoA synthetase 1 (ACSL1) and lipid metabolism in response to fatty acid exposure and inflammatory signals. We found ACSL1 expression was significantly increased in the kidney cortex of db/db mice, and exposure to palmitate or tumor necrosis factor-α significantly increased Acsl1 mRNA expression in HK-2 cells. In addition, palmitate treatment significantly increased the levels of long-chain acylcarnitines and fatty acyl CoAs in HK2 cells, and these increases were abolished in HK2 cell lines with specific deletion of Acsl1(Acsl1KO cells), suggesting a key role for ACSL1 in fatty acid ß-oxidation. In contrast, tumor necrosis factor-α treatment significantly increased the levels of short-chain acylcarnitines and long-chain fatty acyl CoAs in HK2 cells but not in Acsl1KO cells, consistent with fatty acid channeling to complex lipids. Taken together, our data demonstrate a key role for ACSL1 in regulating lipid metabolism, fatty acid partitioning, and inflammation.


Assuntos
Coenzima A Ligases , Nefropatias Diabéticas , Ácidos Graxos , Animais , Humanos , Camundongos , Coenzima A Ligases/metabolismo , Diabetes Mellitus/patologia , Nefropatias Diabéticas/metabolismo , Ácidos Graxos/metabolismo , Ligases , Palmitatos , Fator de Necrose Tumoral alfa
3.
Clin Kidney J ; 15(10): 1952-1965, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36158159

RESUMO

Introduction: Inflammation and oxidative stress contribute to the disproportionate burden of cardiovascular disease (CVD) in chronic kidney disease (CKD). Disordered catabolism of tryptophan via the kynurenine and indole pathways is linked to CVD in both CKD and dialysis patients. However, the association between specific kynurenine and indole metabolites with subclinical CVD and time to new cardiovascular (CV) events in CKD has not been studied. Methods: We measured kynurenine and indole pathway metabolites using targeted mass spectrometry in a cohort of 325 patients with moderate to severe CKD and a median follow-up of 2 years. Multiple linear regression and Cox regression analyses were used to assess the relationship between these tryptophan metabolites and subclinical CVD, including calcium scores, carotid intima-media thickness and time to new cardiovascular (CV) events. Results: Elevated quinolinic and anthranilic acids were independently associated with reduced time to new CVD [hazard ratio (HR) 1.28, P = .01 and HR 1.02, P = .02, respectively). Low tryptophan levels were associated with reduced time to new CV events when adjusting for demographics and CVD history (HR 0.30, P = .03). Low tryptophan levels were also associated with aortic calcification in a fully adjusted linear regression model (ß = -1983, P = .006). Similarly, high levels of several kynurenine pathway metabolites predicted increased coronary, aortic and composite calcification scores. Conclusions: We demonstrate the association of kynurenine pathway metabolites, and not indole derivatives, with subclinical and new CV events in an advanced CKD cohort. Our findings support a possible role for altered tryptophan immune metabolism in the pathogenesis of CKD-associated atherosclerosis.

4.
Ann Clin Transl Neurol ; 9(9): 1392-1404, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35923113

RESUMO

OBJECTIVE: The serum lipidomic profile associated with neuropathy in type 2 diabetes is not well understood. Obesity and dyslipidemia are known neuropathy risk factors, suggesting lipid profiles early during type 2 diabetes may identify individuals who develop neuropathy later in the disease course. This retrospective cohort study examined lipidomic profiles 10 years prior to type 2 diabetic neuropathy assessment. METHODS: Participants comprised members of the Gila River Indian community with type 2 diabetes (n = 69) with available stored serum samples and neuropathy assessment 10 years later using the combined Michigan Neuropathy Screening Instrument (MNSI) examination and questionnaire scores. A combined MNSI index was calculated from examination and questionnaire scores. Serum lipids (435 species from 18 classes) were quantified by mass spectrometry. RESULTS: The cohort included 17 males and 52 females with a mean age of 45 years (SD = 9 years). Participants were stratified as with (high MNSI index score > 2.5407) versus without neuropathy (low MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarnitines and increased total free fatty acids, independent of chain length and saturation, in serum at baseline associated with incident peripheral neuropathy at follow-up, that is, participants had high MNSI index scores, independent of covariates. Participants with neuropathy also had decreased phosphatidylcholines and increased lysophosphatidylcholines at baseline, independent of chain length and saturation. The abundance of other lipid classes did not differ significantly by neuropathy status. INTERPRETATION: Abundance differences in circulating acylcarnitines, free fatty acids, phosphatidylcholines, and lysophosphatidylcholines 10 years prior to neuropathy assessment are associated with neuropathy status in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/etiologia , Ácidos Graxos não Esterificados , Feminino , Humanos , Lipidômica , Lisofosfatidilcolinas , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas , Estudos Retrospectivos
5.
Nat Immunol ; 22(11): 1440-1451, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686860

RESUMO

Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.


Assuntos
Colite/enzimologia , Colo/enzimologia , Citotoxicidade Imunológica , Complexo II de Transporte de Elétrons/metabolismo , Células Epiteliais/enzimologia , Doença Enxerto-Hospedeiro/enzimologia , Mucosa Intestinal/enzimologia , Mitocôndrias/enzimologia , Linfócitos T/imunologia , Animais , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/ultraestrutura , Modelos Animais de Doenças , Complexo II de Transporte de Elétrons/genética , Células Epiteliais/imunologia , Células Epiteliais/ultraestrutura , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/imunologia , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Ácido Succínico/metabolismo , Linfócitos T/metabolismo
6.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437304

RESUMO

BACKGROUNDThis study systematically investigated circulating and retinal tissue lipid determinants of human diabetic retinopathy (DR) to identify underlying lipid alterations associated with severity of DR.METHODSRetinal tissues were retrieved from postmortem human eyes, including 19 individuals without diabetes, 20 with diabetes but without DR, and 20 with diabetes and DR, for lipidomic study. In a parallel study, serum samples from 28 American Indians with type 2 diabetes from the Gila River Indian Community, including 12 without DR, 7 with mild nonproliferative DR (NPDR), and 9 with moderate NPDR, were selected. A mass-spectrometry-based lipidomic platform was used to measure serum and tissue lipids.RESULTSIn the postmortem retinas, we found a graded decrease of long-chain acylcarnitines and longer-chain fatty acid ester of hydroxyl fatty acids, diacylglycerols, triacylglycerols, phosphatidylcholines, and ceramide(NS) in central retina from individuals with no diabetes to those with diabetes with DR. The American Indians' sera also exhibited a graded decrease in circulating long-chain acylcarnitines and a graded increase in the intermediate-length saturated and monounsaturated triacylglycerols from no DR to moderate NPDR.CONCLUSIONThese findings suggest diminished synthesis of complex lipids and impaired mitochondrial ß-oxidation of fatty acids in retinal DR, with parallel changes in circulating lipids.TRIAL REGISTRATIONClinicalTrials.gov NCT00340678.FUNDINGThis work was supported by NIH grants R24 DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572, P30 EY007003; The Thomas Beatson Foundation; and JDRF Center for Excellence (5-COE-2019-861-S-B).


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/metabolismo , Lipidômica , Retina/metabolismo , Adulto , Negro ou Afro-Americano , Idoso , Arizona , Carnitina/análogos & derivados , Carnitina/metabolismo , Estudos de Casos e Controles , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/etiologia , Diglicerídeos/metabolismo , Progressão da Doença , Ésteres/metabolismo , Feminino , Hispânico ou Latino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , População Branca , Indígena Americano ou Nativo do Alasca
7.
Diabetes Care ; 44(9): 2098-2106, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244329

RESUMO

OBJECTIVES: Patients with type 1 diabetes (T1D) exhibit modest lipid abnormalities as measured by traditional metrics. This study aimed to identify lipidomic predictors of rapid decline of kidney function in T1D. RESEARCH DESIGN AND METHODS: In a case-control study, 817 patients with T1D from three large cohorts were randomly split into training and validation subsets. Case was defined as >3 mL/min/1.73 m2 per year decline in estimated glomerular filtration rate (eGFR), while control was defined as <1 mL/min/1.73 m2 per year decline over a minimum 4-year follow-up. Lipids were quantified in baseline serum samples using a targeted mass spectrometry lipidomic platform. RESULTS: At individual lipids, free fatty acid (FFA)20:2 was directly and phosphatidylcholine (PC)16:0/22:6 was inversely and independently associated with rapid eGFR decline. When examined by lipid class, rapid eGFR decline was characterized by higher abundance of unsaturated FFAs, phosphatidylethanolamine (PE)-Ps, and PCs with an unsaturated acyl chain at the sn1 carbon, and by lower abundance of saturated FFAs, longer triacylglycerols, and PCs, PEs, PE-Ps, and PE-Os with an unsaturated acyl chain at the sn1 carbon at eGFR ≥90 mL/min/1.73 m2. A multilipid panel consisting of unsaturated FFAs and saturated PE-Ps predicted rapid eGFR decline better than individual lipids (C-statistic, 0.71) and improved the C-statistic of the clinical model from 0.816 to 0.841 (P = 0.039). Observations were confirmed in the validation subset. CONCLUSIONS: Distinct from previously reported predictors of GFR decline in type 2 diabetes, these findings suggest differential incorporation of FFAs at the sn1 carbon of the phospholipids' glycerol backbone as an independent predictor of rapid GFR decline in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Estudos de Casos e Controles , Progressão da Doença , Ácidos Graxos não Esterificados , Taxa de Filtração Glomerular , Humanos , Rim , Fosfolipídeos , Fatores de Risco
8.
J Biol Chem ; 296: 100120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234591

RESUMO

Increased myeloperoxidase (MPO) expression and activity are associated with atherosclerotic disease in patients with chronic kidney disease (CKD). However, the causal relationship between MPO and the development and progression of atherosclerosis in patients with CKD is unknown. Eight-week-old male low-density-lipoprotein-receptor-deficient mice were subjected to 5/6 nephrectomy, irradiated, and transplanted with bone marrow from MPO-deficient mice to induce bone marrow MPO deletion (CKD-bMPOKO) or bone marrow from WT mice as a control to maintain preserved bone marrow MPO(CKD-bMPOWT). The mice were maintained on a high-fat/high-cholesterol diet for 16 weeks. As anticipated, both groups of mice exhibited all features of moderate CKD, including elevated plasma creatinine, lower hematocrit, and increased intact parathyroid hormone but did not demonstrate any differences between the groups. Irradiation and bone marrow transplantation did not further affect body weight, blood pressure, creatinine, or hematocrit in either group. The absence of MPO expression in the bone marrow and atherosclerotic lesions of the aorta in the CKD-bMPOKO mice was confirmed by immunoblot and immunohistochemistry, respectively. Decreased MPO activity was substantiated by the absence of 3-chlorotyrosine, a specific by-product of MPO, in aortic atherosclerotic lesions as determined by both immunohistochemistry and highly sensitive LC-MS. Quantification of the aortic lesional area stained with oil red O revealed that CKD-bMPOKO mice had significantly decreased aortic plaque area as compared with CKD-bMPOWT mice. This study demonstrates the reduction of atherosclerosis in CKD mice with the deletion of MPO in bone marrow cells, strongly implicating bone-marrow-derived MPO in the pathogenesis of CKD atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Medula Óssea/metabolismo , Peroxidase/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Aterosclerose/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Nefrectomia , Insuficiência Renal Crônica/patologia , Proteína Amiloide A Sérica/metabolismo
9.
J Transl Sci ; 6(6)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33240530

RESUMO

RATIONALE AND OBJECTIVE: Despite contribution of dyslipidemia to ischemic stroke, plasma lipidomic correlates of stroke in CKD is not studied. This study is aimed to identify plasma lipid alterations associated with stroke. STUDY DESIGN: Cross sectional. SETTING AND POPULATION: 214 participants of Clinical Phenotyping and Resource Biobank Core (CPROBE). Clinical data and plasma samples at the time of recruitment were obtained and used to generate lipidomic data by liquid chromatography/mass-spectrometry-based untargeted platform. PREDICTORS: Various levels of free fatty acids, acylcarnitines and complex lipids. OUTCOME: Stroke. ANALYTIC APPROACH: includes compound by compound comparison of lipids using t-test adjusted by false discovery rate in patients with and without stroke, and application of logistic regression analysis to identify independent lipid predictors of stroke and to estimate the odds associated with their various levels. RESULTS: Overall, we identified 330 compounds. Enrichment analysis revealed overrepresentation of differentially regulated phosphatidylcholines (PC)s and phosphatidylethanolamines (PE)s were overrepresented in stroke (P<0.001). Abundance of PC38:4, PE36:4, PC34:0, and palmitate were significantly higher, but those of plasmenyl-PE (pPE)38:2, and PE 32:2 was significantly lower in patients with stroke (p≤0.0014). After adjusting, each 1-SD increase in palmitate and PC38:4 was independently associated with 1.84 fold (95% CI: 1.06-3.20, p=0.031) and 1.84 fold (1.11-3.05, p=0.018) higher risk of stroke, respectively. We observed a significant trend toward higher abundance of PCs, PEs, pPEs, and sphingomyelins in stroke (p≤0.046). LIMITATIONS: Small sample size; unclear, if similar changes in the same or opposite direction preceded stroke, as the cross-sectional nature of the observation does not allow determining the effect of time course on lipid alterations. CONCLUSION: Differential regulation of palmitate, PCs, and PEs in patients with CKD and a history of stroke may represent a previously unrecognized risk factor and might be a target of risk stratification and modification.

10.
Sci Signal ; 13(644)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788339

RESUMO

The oxidation of tyrosine residues to generate o,o'-dityrosine cross-links in extracellular proteins is necessary for the proper function of the extracellular matrix (ECM) in various contexts in invertebrates. Tyrosine oxidation is also required for the biosynthesis of thyroid hormone in vertebrates, and there is evidence for oxidative cross-linking reactions occurring in extracellular proteins secreted by myofibroblasts. The ECM protein fibronectin circulates in the blood as a globular protein that dimerizes through disulfide bridges generated by cysteine oxidation. We found that cellular (fibrillar) fibronectin on the surface of transforming growth factor-ß1 (TGF-ß1)-activated human myofibroblasts underwent multimerization by o,o'-dityrosine cross-linking under reducing conditions that disrupt disulfide bridges, but soluble fibronectin did not. This reaction on tyrosine residues required both the TGF-ß1-dependent production of hydrogen peroxide and the presence of myeloperoxidase (MPO) derived from inflammatory cells, which are active participants in wound healing and fibrogenic processes. Oxidative cross-linking of matrix fibronectin attenuated both epithelial and fibroblast migration and conferred resistance to proteolysis by multiple proteases. The abundance of circulating o,o'-dityrosine-modified fibronectin was increased in a murine model of lung fibrosis and in human subjects with interstitial lung disease compared to that in control healthy subjects. These studies indicate that tyrosine can undergo stable, covalent linkages in fibrillar fibronectin under inflammatory conditions and that this modification affects the migratory behavior of cells on such modified matrices, suggesting that this modification may play a role in both physiologic and pathophysiologic tissue repair.


Assuntos
Movimento Celular/fisiologia , Fibronectinas/metabolismo , Miofibroblastos/metabolismo , Estresse Oxidativo/fisiologia , Peptídeo Hidrolases/metabolismo , Células A549 , Animais , Linhagem Celular , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/química , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/citologia , Neutrófilos/citologia , Neutrófilos/metabolismo , Oxirredução , Peroxidase/genética , Peroxidase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo
11.
Nephrol Dial Transplant ; 35(2): 303-312, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137494

RESUMO

BACKGROUND: The clinical relevance of arachidonic acid (AA) metabolites in chronic kidney disease (CKD) progression is poorly understood. We aimed to compare the concentrations of 85 enzymatic pathway products of AA metabolism in patients with CKD who progressed to end-stage kidney disease (ESKD) versus patients who did not in a subcohort of Chronic Renal Insufficiency Cohort (CRIC) and to estimate the risk of CKD progression and major cardiovascular events by levels of AA metabolites and their link to enzymatic metabolic pathways. METHODS: A total 123 patients in the CRIC study who progressed to ESKD were frequency matched with 177 nonprogressors and serum eicosanoids were quantified by mass spectrometry. We applied serum collected at patients' Year 1 visit and outcome of progression to ESKD was ascertained over the next 10 years. We used logistic regression models for risk estimation. RESULTS: Baseline 15-hydroxyeicosatetraenoate (HETE) and 20-HETE levels were significantly elevated in progressors (false discovery rate Q ≤ 0.026). The median 20-HETE level was 7.6 pmol/mL [interquartile range (IQR) 4.2-14.5] in progressors and 5.4 pmol/mL (IQR 2.8-9.4) in nonprogressors (P < 0.001). In an adjusted model, only 20-HETE independently predicted CKD progression. Each 1 standard deviation increase in 20-HETE was independently associated with 1.45-fold higher odds of progression (95% confidence interval 1.07-1.95; P = 0.017). Principal components of lipoxygenase (LOX) and cytochrome P450 (CYP450) pathways were independently associated with CKD progression. CONCLUSIONS: We found higher odds of CKD progression associated with higher 20-HETE, LOX and CYP450 metabolic pathways. These alterations precede CKD progression and may serve as targets for interventions aimed at halting progression.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Falência Renal Crônica/diagnóstico , Lipoxigenase/metabolismo , Insuficiência Renal Crônica/complicações , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Masculino , Pessoa de Meia-Idade
12.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573977

RESUMO

BACKGROUNDIn this study, we identified the lipidomic predictors of early type 2 diabetic kidney disease (DKD) progression, which are currently undefined.METHODSThis longitudinal study included 92 American Indians with type 2 diabetes. Serum lipids (406 from 18 classes) were quantified using mass spectrometry from baseline samples when iothalamate-based glomerular filtration rate (GFR) was at least 90 mL/min. Affymetrix GeneChip Array was used to measure renal transcript expression. DKD progression was defined as at least 40% decline in GFR during follow-up.RESULTSParticipants had a mean age of 45 ± 9 years and median urine albumin/creatinine ratio of 43 (interquartile range 11-144). The 32 progressors had significantly higher relative abundance of polyunsaturated triacylglycerols (TAGs) and a lower abundance of C16-C20 acylcarnitines (ACs) (P < 0.001). In a Cox regression model, the main effect terms of unsaturated free fatty acids and phosphatidylethanolamines and the interaction terms of C16-C20 ACs and short-low-double-bond TAGs by categories of albuminuria independently predicted DKD progression. Renal expression of acetyl-CoA carboxylase-encoding gene (ACACA) correlated with serum diacylglycerols in the glomerular compartment (r = 0.36, and P = 0.006) and with low-double-bond TAGs in the tubulointerstitial compartment (r = 0.52, and P < 0.001).CONCLUSIONCollectively, the findings reveal a previously unrecognized link between lipid markers of impaired mitochondrial ß-oxidation and enhanced lipogenesis and DKD progression in individuals with preserved GFR. Renal acetyl-CoA carboxylase activation accompanies these lipidomic changes and suggests that it may be the underlying mechanism linking lipid abnormalities to DKD progression.TRIAL REGISTRATIONClinicalTrials.gov, NCT00340678.FUNDINGNIH R24DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, and P30DK020572.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/patologia , Índios Norte-Americanos , Lipogênese , Adulto , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Oxirredução , Prognóstico
13.
Nat Microbiol ; 4(5): 800-812, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858572

RESUMO

Host NOD-like receptor family pyrin domain-containing 6 (NLRP6) regulates innate immune responses and gastrointestinal homeostasis. Its protective role in intestinal colitis and tumorigenesis is dependent on the host microbiome. Host innate immunity and microbial diversity also play a role in the severity of allogeneic immune-mediated gastrointestinal graft-versus-host disease (GVHD), the principal toxicity after allogeneic haematopoietic cell transplantation. Here, we examined the role of host NLRP6 in multiple murine models of allogeneic bone marrow transplantation. In contrast to its role in intestinal colitis, host NLRP6 aggravated gastrointestinal GVHD. The impact of host NLRP6 deficiency in mitigating GVHD was observed regardless of co-housing, antibiotic treatment or colonizing littermate germ-free wild-type and NLRP6-deficient hosts with faecal microbial transplantation from specific pathogen-free wild-type and Nlrp6-/- animals. Chimaera studies were performed to assess the role of NLRP6 expression on host haematopoietic and non-haematopoietic cells. The allogeneic [B6Ly5.2 → Nlrp6-/-] animals demonstrated significantly improved survival compared to the allogeneic [B6Ly5.2 → B6] animals, but did not alter the therapeutic graft-versus-tumour effects after haematopoietic cell transplantation. Our results unveil an unexpected, pathogenic role for host NLRP6 in gastrointestinal GVHD that is independent of variations in the intestinal microbiome and in contrast to its well-appreciated microbiome-dependent protective role in intestinal colitis and tumorigenesis.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro/microbiologia , Receptores de Superfície Celular/imunologia , Animais , Bactérias/classificação , Bactérias/genética , Transplante de Medula Óssea , Fezes/microbiologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Organismos Livres de Patógenos Específicos , Transplante Homólogo
14.
Am J Nephrol ; 48(4): 269-277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30326477

RESUMO

BACKGROUND: The gut microbiota is altered in patients with chronic kidney disease (CKD), and cardiovascular risk increases with progressive CKD. This study examined the potential link between short chain fatty acids (SCFAs), which are produced by the gut microbiota, and cardiovascular outcomes in patients with CKD. METHODS: SCFAs were measured using a targeted liquid chromatography-mass spectrometry platform in baseline plasma samples from 214 patients with CKD enrolled in the Clinical Phenotyping Resource and Biobank Core; 81 patients with coronary artery disease (CAD) and 133 without CAD were randomly assigned to training and validation subsets. The primary outcome was a history of CAD and the secondary outcome was a composite history of cardiovascular disease (CVD) at enrollment. RESULTS: We found significantly higher levels of the SCFA valerate among patients with CAD as compared with patients without CAD in the training set (p < 0.001). The valerate concentrations were also significantly higher among subjects with composite outcomes of CVD compared to those without CVD (p = 0.006). These results were subsequently replicated in the validation set. Logistic regression analysis revealed a strong independent association between plasma valerate levels and CVD in both training and validation sets. When valerate was added to the base clinical model comprising of diabetes, hypertension, urinary protein-creatinine ratio, and estimated glomerular filtration rate, it increased the c-statistics for predicting CVD from 0.68 to 0.79 (p = 0.02) in the training set, an observation which was confirmed in the validation set. -Conclusion: This study provides evidence for alterations in gut-microbiota-derived SCFAs with advancing CKD, demonstrates the association of higher plasma valerate levels with pre-existing CVD, and reveals areas for future exploration of cardiovascular risk in patients with CKD.


Assuntos
Doença da Artéria Coronariana/diagnóstico , Microbioma Gastrointestinal/fisiologia , Ácidos Pentanoicos/sangue , Insuficiência Renal Crônica/complicações , Adulto , Idoso , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/etiologia , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ácidos Pentanoicos/metabolismo , Valor Preditivo dos Testes , Prognóstico , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/fisiopatologia , Medição de Risco/métodos , Fatores de Risco
15.
Diabetes Care ; 41(11): 2431-2437, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201848

RESUMO

OBJECTIVE: Phagocyte-derived myeloperoxidase (MPO) and proinflammatory HDL are associated with metabolic syndrome (MetS) and increased cardiovascular disease risk. Therapeutic lifestyle changes (TLCs), such as a Mediterranean diet and exercise, decrease this risk. However, the link among TLCs, HDL, and MPO-mediated oxidative stress remains unclear. RESEARCH DESIGN AND METHODS: In this study, we characterized changes in cholesterol efflux capacity (CEC), a metric of HDL function; MPO-mediated oxidation; and the HDL proteomic profile in 25 patients with MetS who underwent 12 weeks of TLCs. RESULTS: After 12 weeks, before significant changes to HDL levels, most MetS components improved as a result of the TLCs. CEC was significantly increased, and HDL MPO oxidation products, 3-chlorotyrosine and 3-nitrotyrosine, were decreased with TLCs. The changes in CEC were inversely related to the unit changes in 3-chlorotyrosine after we controlled for changes in the other MetS components. TLCs did not remodel the HDL proteome. CONCLUSIONS: In summary, TLCs improved HDL function by inhibiting MPO-mediated oxidative stress even before appreciable changes in HDL levels.


Assuntos
HDL-Colesterol/metabolismo , Estilo de Vida , Lipoproteínas HDL/metabolismo , Síndrome Metabólica/terapia , Adolescente , Adulto , Idoso , Animais , Transporte Biológico , Restrição Calórica , Células Cultivadas , Dietoterapia , Dieta Mediterrânea , Terapia por Exercício , Feminino , Humanos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo/fisiologia , Educação de Pacientes como Assunto , Peroxidase/antagonistas & inibidores , Peroxidase/metabolismo , Projetos Piloto , Proteômica , Comportamento de Redução do Risco , Adulto Jovem
16.
Am J Cardiol ; 122(4): 565-570, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30005891

RESUMO

Fine particulate matter (PM2.5) air pollution and environmental temperatures influence cardiovascular morbidity and mortality. Recent evidence suggests that several air pollutants can promote dyslipidemia; however, the impact of ambient PM2.5 and temperature on high-density lipoprotein (HDL) function remains unclear. We hypothesized that daily exposures to higher levels of ambient PM2.5 and colder outdoor temperatures would impair HDL functionality. Lipoproteins, serum cholesterol efflux capacity (CEC), and HDL oxidation markers were measured twice in 50 healthy adults (age 32.1 ± 9.6 years) living in southeast Michigan and associated with ambient and personal-level exposures using mixed models. Although previous 7-day mean outdoor temperature (4.4 ± 9.8°C) and PM2.5 levels (9.1 ± 1.8 µg/m3) were low, higher ambient PM2.5 exposures (per 10 µg/m3) were associated with significant increases in the total cholesterol-to-HDL-C ratio (rolling average lag days 1 and 2) as well as reductions in CEC by -1.93% (lag day 5, p = 0.022) and -1.62% (lag day 6, p = 0.032). Colder outdoor temperatures (per 10°C) were also associated with decreases in CEC from -0.62 to -0.63% (rolling average lag days 5 and 7, p = 0.027 and 0.028). Previous 24-hour personal-level PM2.5 and temperature exposures did not impact outcomes, nor were any exposures associated with changes in HDL-oxidation metrics. In conclusion, we provide the first evidence that ambient PM2.5 (even at low levels) and outdoor temperatures may influence serum CEC, a critical antiatherosclerotic HDL function.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Temperatura Baixa/efeitos adversos , Exposição Ambiental/efeitos adversos , Lipoproteínas HDL/sangue , Material Particulado/efeitos adversos , Adolescente , Adulto , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , Feminino , Seguimentos , Humanos , Masculino , Michigan/epidemiologia , Pessoa de Meia-Idade , Morbidade/tendências , Taxa de Sobrevida/tendências , Fatores de Tempo , Adulto Jovem
17.
J Biol Chem ; 293(19): 7238-7249, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29581235

RESUMO

Increased myeloperoxidase (MPO) levels and activity are associated with increased cardiovascular risk among individuals with chronic kidney disease (CKD). However, a lack of good animal models for examining the presence and catalytic activity of MPO in vascular lesions has impeded mechanistic studies into CKD-associated cardiovascular diseases. Here, we show for the first time that exaggerated atherosclerosis in a pathophysiologically relevant CKD mouse model is associated with increased macrophage-derived MPO activity. Male 7-week-old LDL receptor-deficient mice underwent sham (control mice) or 5/6 nephrectomy and were fed either a low-fat or high-fat, high-cholesterol diet for 24 weeks, and the extents of atherosclerosis and vascular reactivity were assessed. MPO expression and oxidation products-protein-bound oxidized tyrosine moieties 3-chlorotyrosine, 3-nitrotyrosine, and o,o'-dityrosine-were examined with immunoassays and confirmed with mass spectrometry (MS). As anticipated, the CKD mice had significantly higher plasma creatinine, urea nitrogen, and intact parathyroid hormone along with lower hematocrit and body weight. On both the diet regimens, CKD mice did not have hypertension but had lower cholesterol and triglyceride levels than the control mice. Despite the lower cholesterol levels, CKD mice had increased aortic plaque areas, fibrosis, and luminal narrowing. They also exhibited increased MPO expression and activity (i.e. increased oxidized tyrosines) that co-localized with infiltrating lesional macrophages and diminished vascular reactivity. In summary, unlike non-CKD mouse models of atherosclerosis, CKD mice exhibit increased MPO expression and catalytic activity in atherosclerotic lesions, which co-localize with lesional macrophages. These results implicate macrophage-derived MPO in CKD-accelerated atherosclerosis.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Falência Renal Crônica/complicações , Proteínas Musculares/metabolismo , Oxidantes/metabolismo , Peroxidase/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/patologia , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Falência Renal Crônica/sangue , Falência Renal Crônica/fisiopatologia , Testes de Função Renal , Lipídeos/sangue , Lipoproteínas/sangue , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Knockout , Nefrectomia , Estresse Oxidativo , Hormônio Paratireóideo/sangue , Receptores de LDL/genética , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasodilatação
18.
PLoS One ; 13(3): e0193782, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29505607

RESUMO

High density lipoprotein (HDL) cholesterol levels and cholesterol efflux capacity (CEC) are inversely correlated with coronary artery disease (CAD) risk. Myeloperoxidase (MPO) derived oxidants and HDL proteome changes are implicated in HDL dysfunction in subjects with CAD in the United States; however, the effect of MPO on HDL function and HDL proteome in ethnic Chinese population is unknown. We recruited four matched ethnic Chinese groups (20 patients each): subjects with 1) low HDL levels (HDL levels in men <40mg/dL and women <50mg/dL) and non-CAD (identified by coronary angiography or cardiac CT angiography); 2) low HDL and CAD; 3) high HDL (men >50mg/dL; women >60mg/dL) with no CAD; and 4) high HDL with CAD. Serum cytokines, serum MPO levels, serum CEC, MPO-oxidized HDL tyrosine moieties, and HDL proteome were assessed by mass spectrometry individually in the four groups. The cytokines, MPO levels, and HDL proteome profiles were not significantly different between the four groups. As expected, CEC was depressed in the entire CAD group but more specifically in the CAD low-HDL group. HDL of CAD subjects had significantly higher 3-nitrotyrosine than non-CAD subjects, but the MPO-specific 3-chlorotyrosine was unchanged; CEC in the CAD low-HDL group did not correlate with either HDL 3-chlorotyrosine or 3-nitrotyrosine levels. Neither 3-chlorotyrosine, which is MPO-specific, nor 3-nitrotyrosine generated from MPO or other reactive nitrogen species was associated with CEC. MPO mediated oxidative stress and HDL proteome composition changes are not the primary cause HDL dysfunction in Chinese subjects with CAD. These studies highlight ethnic differences in HDL dysfunction between United States and Chinese cohorts raising possibility of unique pathways of HDL dysfunction in this cohort.


Assuntos
Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/enzimologia , Lipoproteínas HDL/sangue , Peroxidase/sangue , Proteoma , Animais , Estudos de Casos e Controles , Linhagem Celular , China , Estudos de Coortes , Doença da Artéria Coronariana/etnologia , Estudos Transversais , Citocinas/sangue , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Oxirredução
19.
J Am Soc Nephrol ; 29(1): 295-306, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021384

RESUMO

Studies of lipids in CKD, including ESRD, have been limited to measures of conventional lipid profiles. We aimed to systematically identify 17 different lipid classes and associate the abundance thereof with alterations in acylcarnitines, a metric of ß-oxidation, across stages of CKD. From the Clinical Phenotyping Resource and Biobank Core (CPROBE) cohort of 1235 adults, we selected a panel of 214 participants: 36 with stage 1 or 2 CKD, 99 with stage 3 CKD, 61 with stage 4 CKD, and 18 with stage 5 CKD. Among participants, 110 were men (51.4%), 64 were black (29.9%), and 150 were white (70.1%), and the mean (SD) age was 60 (16) years old. We measured plasma lipids and acylcarnitines using liquid chromatography-mass spectrometry. Overall, we identified 330 different lipids across 17 different classes. Compared with earlier stages, stage 5 CKD associated with a higher abundance of saturated C16-C20 free fatty acids (FFAs) and long polyunsaturated complex lipids. Long-chain-to-intermediate-chain acylcarnitine ratio, a marker of efficiency of ß-oxidation, exhibited a graded decrease from stage 2 to 5 CKD (P<0.001). Additionally, multiple linear regression revealed that the long-chain-to-intermediate-chain acylcarnitine ratio inversely associated with polyunsaturated long complex lipid subclasses and the C16-C20 FFAs but directly associated with short complex lipids with fewer double bonds. We conclude that increased abundance of saturated C16-C20 FFAs coupled with impaired ß-oxidation of FFAs and inverse partitioning into complex lipids may be mechanisms underpinning lipid metabolism changes that typify advancing CKD.


Assuntos
Carnitina/sangue , Ácidos Graxos/sangue , Falência Renal Crônica/sangue , Metabolismo dos Lipídeos , Oxirredução , Adulto , Idoso , Idoso de 80 Anos ou mais , Carnitina/análogos & derivados , Carnitina/química , Ácidos Graxos/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
20.
Am J Nephrol ; 46(1): 73-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668952

RESUMO

BACKGROUND: The role of myeloperoxidase in chronic kidney disease (CKD) and its association with coronary artery disease (CAD) is controversial. In this study, we compared myeloperoxidase and protein-bound 3-chlorotyrosine (ClY) levels in subjects with varying degrees of CKD and tested their associations with CAD. METHODS: From Clinical Phenotyping Resource and Biobank Core, 111 patients were selected from CKD stages 1 to 5. Plasma myeloperoxidase level was measured using enzyme-linked-immunosorbent assay. Plasma protein-bound 3-ClY, a specific product of hypochlorous acid generated by myeloperoxidase was measured by liquid chromatography mass spectrometry. RESULTS: We selected 29, 20, 24, 22, and 16 patients from stages 1 to 5 CKD, respectively. In a sex-adjusted general linear model, mean ± SD of myeloperoxidase levels decreased from 18.1 ± 12.3 pmol in stage 1 to 10.9 ± 4.7 pmol in stage 5 (p = 0.011). In patients with and without CAD, the levels were 19.1 ± 10.1 and 14.8 ± 8.7 pmol (p = 0.036). There was an increase in 3-ClY mean from 0.81 ± 0.36 mmol/mol-tyrosine in stage 1 to 1.42 ± 0.41 mmol/mol-tyrosine in stage 5 (p < 0.001). The mean 3-ClY levels in patients with and without CAD were 1.25 ± 0.44 and 1.04 ± 0.42 mmol/mol-tyrosine (p = 0.023), respectively. C-statistic of ClY when added to myeloperoxidase level to predict CKD stage 5 was 0.86, compared to 0.79 for the myeloperoxidase level alone (p = 0.0097). CONCLUSION: The myeloperoxidase levels decrease from stages 1 to 5, whereas activity increases. In contrast, both myeloperoxidase and ClY levels rise in the presence of CAD at various stages of CKD. Measuring both plasma myeloperoxidase and 3-CLY levels provide added value to determine the burden of myeloperoxidase-mediated oxidative stress.


Assuntos
Doença da Artéria Coronariana/sangue , Peroxidase/sangue , Insuficiência Renal Crônica/sangue , Tirosina/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Doença da Artéria Coronariana/etiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Peroxidase/metabolismo , Insuficiência Renal Crônica/complicações , Fatores de Risco , Índice de Gravidade de Doença , Tirosina/sangue , Tirosina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...